The Rio Rotiano event and its challenges to the mathematical and numerical modelling of debris flow phenomena

Prof. Ing. Giorgio Rosatti

UNIVERSITÀ DI TRENTO

Dipartimento di Ingegneria Civile, Ambientale e Meccanica

Flood hazard, mitigation works and residual risks: how can we manage changes over time?

OCTOBER 9-10 2023 Sala della Cooperazione, Trento (Italy)

The basin characteristics

• Area: 2.5 km^2

geometry

geology

- Maximum elevation: 2050m AMSL
- Minimum elevation: 840*m* AMSL
- Average slope: 0.51 m/m
- Melton ratio:
- Substrate outcrops in the upper and lower part

0.78

• Würmian sandy glacial deposits with large boulders in the middle part

(Data by CNR-IRPI)

The creek characteristics

Upper part (40% ÷27%) -

Middle stretch (~25%): -

Conoid

Rocky gorge with a small waterfall

Google Earth

The system of protection works before the event

Diversion embankment (1882)

16 check dams (70s)

Paved channel (1986)

Slit check dam (1993)

Sediment storage area with a final open check dam (2012-2018) <

27-30 October 2018 in the Rio Rotiano basin

Date (dd/mm/yy hh:mm)

(Data by TESAF)

~ 160,000 m³ of sediments deposited in the conoid

(Data by CNR-IRPI)

before...

in the sediment storage areas

in the sediment storage areas

in the sediment storage areas

Sediment storage areas

The consequences on the 16 check dams

The consequences on the 16 check dams

before...

~ 100.000 m³ of sediments eroded here

(Data by CNR-IRPI)

The consequences the 16 check dams

After the event... the GPR Research Project

Dipartimento di Ingegneria Civile, Ambientale e Meccanica

- assessing of the effectiveness of a new system of protection works
- trying to understand what happened

Protection works: from the old... to the new system

Restoration of the sediment storage areas and the open check dam

New sediment storage area with a final open check dam

New diversion embankment and paved channel

The available tool: the TRENT2D model

mobile bed

g

Z

- ✓ Two-phase, phase-averaged description (mixture theory)
- Basic assumptions:
 - Shallow-flow
 - Isokinetic behaviour
- ✓ 2D depth averaged PDEs
- ✓ Bed: mobile, non-erodible, and fixed bed
- ✓ Managed through WEEZARD (*https//tool.weezard.eu*)

The context of applicability

- Cascade modelling:
 - Evaluation of the liquid runoff
 - Estimate of the solid discharge (e.g., Takahashi amplification factor)
 - Propagation of the incoming debris flow (no additional rain contribute)

Assessment of the effectiveness of the planned protection works

Standard approach The old sediment storage area with a final open check dam

The new sediment storage area with a final open check dam

Special features! New diversion embankment and paved channel

Assessment of the effectiveness of the paved channel

Challenge 1: careful simulation of debris flow along this stretch

Uniform flow conditions with collision-dominated solid flow

Uniform flow conditions with collision-dominated solid flow

Uniform flow conditions with collision-dominated solid flow

- Does a solid discharge limit exist?
- Is this limit equal to the transport capacity on a mobile bed subjected to the same uniform flow conditions?
- What happens if I exceed this limit?

Uniform flow conditions with collision-dominated solid flow

• A solid discharge limit \hat{q}'_s does exist $\begin{cases}
\hat{q}'_s(\hat{\tau}) > \hat{q}_s(\hat{\tau}) & \text{if } (e_s/d_{50}) \ll 1 \\
\hat{q}'_s(\hat{\tau}) \approx \hat{q}_s(\hat{\tau}) & \text{if } (e_s/d_{50}) \approx 1
\end{cases}$

 $\hat{q}'_{s}(\hat{\tau})$: solid discharge limit over non-erodible bed $\hat{q}_{s}(\hat{\tau})$: transport capacity function over mobile bed

• If I exceed this limit, we have quick transition to mobile-bed and an increase of bed slope

> We implemented the relation in the model

The need for a physical model

- 1. To validate the capabilities of the numerical model to simulate a DF in the paved channel and in the rocky gorge;
- 2. To understand the behaviour of the freefall, hard to reproduce by a 2D model

The need for a physical model

- 1. To validate the capabilities of the numerical model to simulate a DF in the rocky gorge and paved channel;
- 2. To understand the behaviour of the freefall, hard to reproduce by a 2D model

Features of the physical model

Roky gorge

Feeding tank

Paved channel

- Geometric scale: $\lambda = 1/30$
- Froude similitude

Some tests

Comparison 1: 0.015 - 0.003 dynamics 0.0125 0.0025 0.0 - 0.002 0.01 E 0.0075 - 0.0015 E 0 0.005 0.001 0.0025 0.0005 150 180 210 240 270 300 120 t (s) NIVERSIT/ Dipartimento di Ingegneria Civile, Ambientale e Meccanica

ď

Comparison 2: final deposits

Application to the lower part of the Rotiano *(effectiveness, hazard assessment)*

Application to the lower part of the Rotiano (effectiveness, hazard assessment)

Hazard map

Residual hazard scenarios

- 1. Sudden collapse of the residuals of the closed check dams; 200years RP hydrograph as upstream forcing.
- 2. Sudden collapse of the residuals of the closed check dams with the old slit check dam in clogged conditions; 200-years RP hydrograph as upstream forcing.
- 3. Slope collapse and consequent remodelling of the riverbed in the part upstream of the old storage area; 200-years RP hydrograph as upstream forcing.

Scenario 3 maximum deposits map

After the event... the GPR Research Project

Dipartimento di Ingegneria Civile, Ambientale e Meccanica

- assessing of the effectiveness of a new system of protection works
- trying to understand what happened

The features of the event

The features of the event

1. The debris flow affected almost the entire length of the creek;

Challenge 2: a mobile-bed rainfall-runoff distributed model

3. Due to the large erosions, subsurface flow was influenced by bed variations.

The TRENT2D^{MBRR} a debris flow model at basin scale

Liquid phase behaviour in the case of fixed bed \leftrightarrow mobile bed

Feature	Reason
Time lag	Different flow resistance (function of <i>c</i>)
Different maxima	a) Water in bed b) Upwellings

Application to the upper part of the Rotiano *(back analysis)*

Application to the upper part of the Rotiano *(back analysis)*

TRENT2D^{MBRR} difficulties in practical application

- 1. Need for a lot of distributed data
- 2. Large uncertainties in these distributed data
- 3. Estimate of physically based distributed parameters
- 4. Calibration of distributed parameters is costly, and not always easy to do (e.g., for lack or poor quality of surveyed data)
- 5. Non-negligible computational cost
- 6. Not all the possible phenomena are yet included in the model (e.g., shallow hillslope instabilities, check dam collapses...)

Complexity!

Conclusions

✓ The event raised challenges from a modelling point of view:

- accurate modelling of debris flow over non erodible bed
- development of a new paradigm: modelling a debris flow at a basin scale

✓ TRENT2D^{MBRR}

- first attempt to face the challenges
- results show promises
- several aspect can/should be improved
- much work remains to be done to make it an effective tool for back and forecast analyses (e.g. hazard mapping)

Acknowledgements

 Partially funded within the research project "Progetto WEEZARD: un sistema integrato di modellazione matematica a servizio della sicurezza nei confronti di pericoli idrogeologici in ambiente montano" funded by Fondazione CARITRO - Cassa di Risparmio di Trento e Rovereto, Italy

The DICAM Team and collaborators

Prof. Ing. Luigi Fraccarollo

Dott. Ing. Daniel Zugliani

Dott. Ing. Jessica Bontempi

Hydraulic Laboratory Technicians

Dott. Ing. Marta Martinengo

Ing. Fabio Sartori Paolo Scarfiello Lorenzo Forti Andrea Bampi

Dott. Ing. Atousa Ataieyan

Thanks for the attention!

Prof. Ing. Giorgio Rosatti

Dipartimento di Ingegneria Civile, Ambientale e Meccanica