Torrential hazard, mitigation works and residual risks: how can we manage changes over time?

Vulnerability of elements at risk –

assessment approaches from an Austrian perspective

Priv.-Doz. Dr. Sven Fuchs

09.10.2023

Point of departure: Risk

- UN/DRR:
 - The potential loss of life, injury, or destroyed or damaged assets which could occur to a system, society or a community in a specific period of time, determined probabilistically as a function of hazard, exposure, vulnerability and capacity.
- DRR community:
 - Risk = Hazard x Vulnerability (older approach)
 - Risk = Hazard x Exposure x Vulnerability (newer approach)

Vulnerability: Different approaches in science

The most important:

<u>NATURAL SCIENCES:</u> The degree of loss to a given element or set of elements within the area affected by a hazard. It is expressed on a scale of 0 (no loss) to 1 (total loss).

SOCIAL SCIENCES: The

characteristics of a person or a group in terms of their capacity to anticipate, cope with, resist and recover from the impact of a natural hazard.

 Where vulnerable people and places are located and who in a place is vulnerable (Liverman 1990)

Vulnerability: Different approaches in science

 The conditions determined by physical, social, economic and environmental factors or processes which increase the susceptibility of an individual, a community, assets or systems to the impacts of hazards (UN/DRR 2023).

DIMENSIONS	
Physical	Refers to conditions of physical assets – including built-up areas, infrastructure, and open spaces that can be affected by natural hazards
Social	Refers to human welfare including mental and physical health, both at an individual and collective level
Economic	Refers to the financial value and/or productive capacity
Environmental	Refers to all ecological and bio-physical systems and their different functions
Institutional	Refers both organizational form and function as well as guiding legal and cultural rules

Why vulnerability in DRR?

- To improve the quality of risk assessments;
- to better compare different risks;
- to better evaluate different options in risk management;
- to improve cost-effectiveness of protection measures;
- to better understand the impact and thus the socio-economic context of hazards, and to develop and implement adaptation measures in accordance with
 - political,
 - administrative, and
 - economic

management strategies according to political, administrative and economic requirements.

Vulnerability: the physical dimension

Physical	Refers to conditions of physical assets – including built-up
	areas, infrastructure, and open spaces that can be affected
	by natural hazards

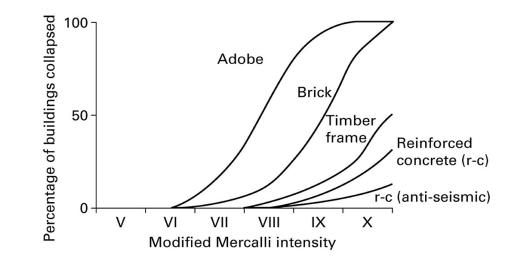
Most common definition in natural sciences: The degree of loss to a given element at risk or set of such elements resulting from the occurrence of a phenomenon of a given magnitude and expressed on a scale from 0 (no loss) to 1 (total loss).

Trento Workshop I 09.10.2023 I Fuchs

- Empirical methods: analysis of observed consequences (data on loss needed)
- Analytical methods:
 - Hazard parameters (e.g. pressure) and effect on elements at risk
 - Numerical models and computer simulation
- Qualitative methods (e.g. indicator-based index)
- Semi-quantitative methods (e.g. matrices)
- Quantitative methods (curves)

- Empirical methods: analysis of observed consequences (data on loss needed)
- Analytical methods:
 - Hazard parameters (e.g. pressure) and effect on elements at risk
 - Numerical models and computer simulation
- Qualitative methods (e.g. indicator-based index)
- **Semi-quantitative** methods (e.g. matrices)
- Quantitative methods (curves)

Sturm, M.; Fuchs, S. (2017). Matrices, curves and indicators: Earth-Science Reviews 171, 272-288. doi: https://doi.org/10.1016/j.earscirev.2017.06.007 to debris flows physical vulnerability ഫ Gems, Papathoma-Köhle, M. approac a review of

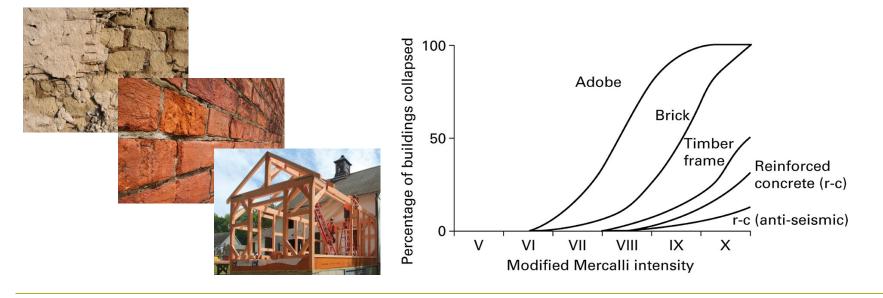


Quantitative methods (curves)

Vulnerability curve:

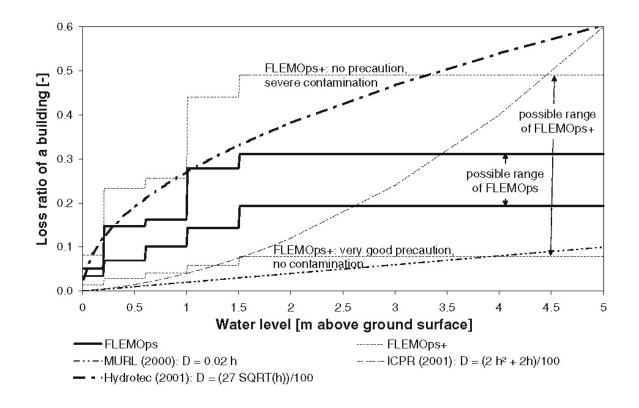
Linking hazard magnitude/intensity to the potential degree of loss, based on observed data and/or event documentation. Results can be directly used in risk equation. Can also be used as predictive model for future events

 Basic idea: the higher the hazard magnitude is the higher the loss will be.



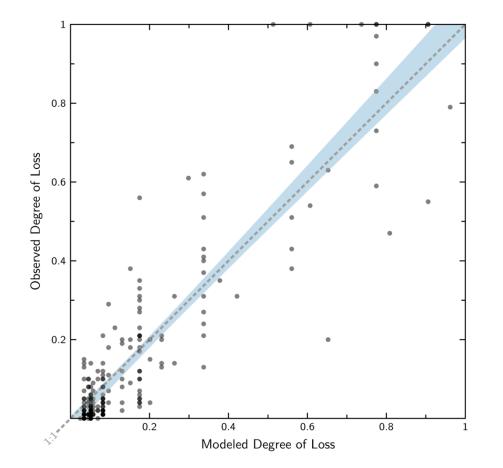
Quantitative methods (curves)

Vulnerability curve:


Linking hazard magnitude/intensity to the potential degree of loss, based on observed data and/or event documentation. Results can be directly used in risk equation. Can also be used as predictive model for future events

Physical vulnerability: Vulnerability curves for floods

 FLEMOps damage curve for residential buildings (based on a statistical analysis of the August 2022 flooding along the Elbe river), and comparison with other damage curves (MURL 2000; Hydrotec 2001; ICPR 2001).


Physical vulnerability: Vulnerability curves for torrential flooding

Trento Workshop I 09.10.2023 I Fuchs

Fuchs et al. 2019

Physical vulnerability: Vulnerability curves for torrential flooding

- Challenge:
 - high spread in the observational data,
 - high spread in observed vs. modelled data.
 - Relatively few data available: need for better event documentation.

Physical vulnerability: Vulnerability curves for torrential flooding

Trento Workshop I 09.10.2023 I Fuchs

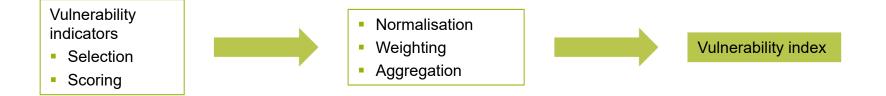
Fuchs et al. 2019

Semi-quantitative methods (e.g. matrices)

Vulnerability matrix:

Information expressing the combination of hazard levels (e.g. magnitude) and their impact on elements at risk by verbal expressions.

HAZARD	depth > 1m Displacement < 30 cm	depth > 1m Displacement > 30 cm	depth > 1m Displacement > 4 m
BUILDINGS VULNERABILITY	•		
Position: above or below the landsli de In the area potentially covered: no Type of foundation: piles	no damage	no damage	no damage
Position: above, on or below the landslide In the area potentially covered: yes Type of foundation: piles	partial damage	collapse	
Position: above, on or below the landslide In the area potentially covered: yes Type of foundation: concrete bed	partial damage	partial damage	collapse


Source: ARMONIA (FP6)

Qualitative methods (e.g. indicator-based index)

Vulnerability indicator:

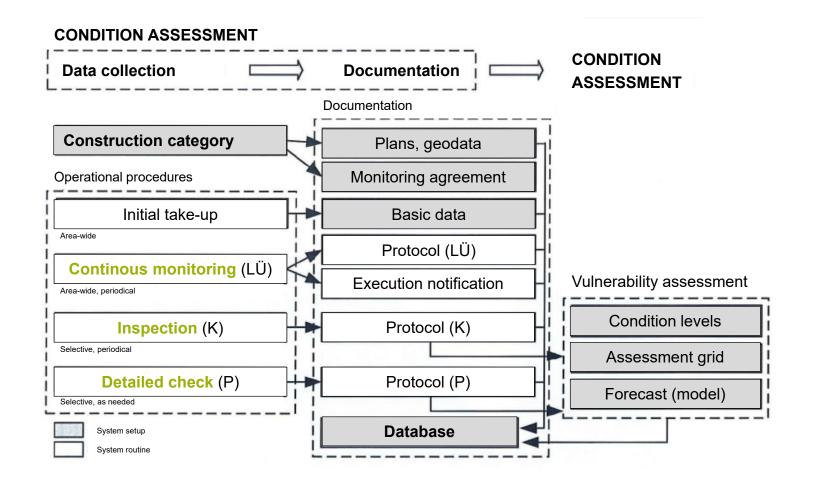
A variable which is an operational representation of a characteristic or quality of a system able to provide information regarding the susceptibility, coping capacity and resilience of a system to a hazard impact.

Example on mitigation measures

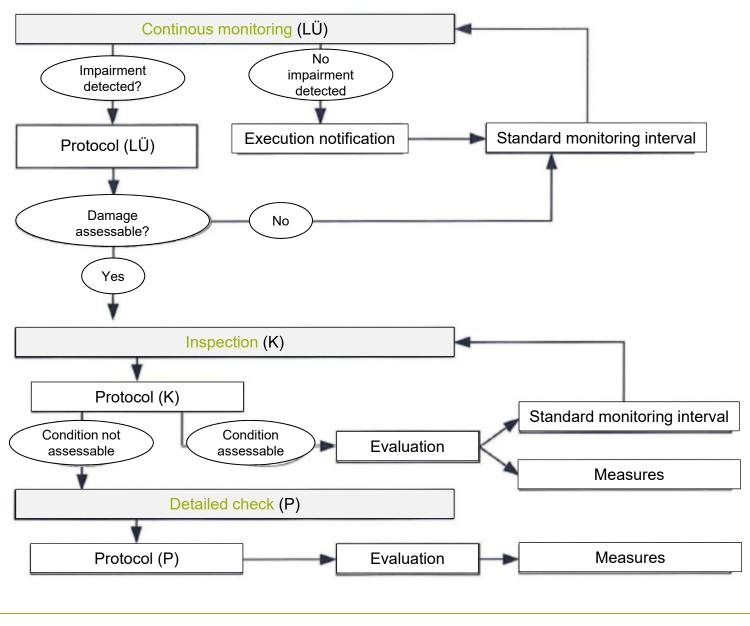
Austrian Standard ONR 24803

- Provides a three-step procedure of vulnerability assessment, based on indicators.
- Continuous monitoring (LÜ) is used to determine the functional efficiency of the structures. It covers the visual detection of damage.
- The inspection (K) of the structure includes the survey of the state of preservation of the protective structure.
- The detailed check (P) of the structure has to provide a more detailed information about the state of preservation of protective structures.

Technical mitigation: general principles



Trento Workshop I 09.10.2023 I Fuchs


Technical mitigation: vulnerability assessment

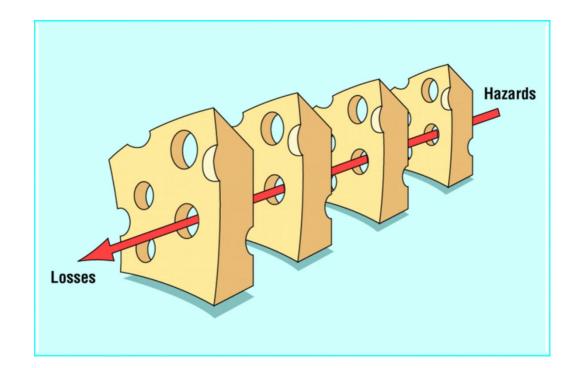
Trento Workshop I 09.10.2023 I Fuchs

Trento Workshop I 09.10.2023 I Fuchs

Technical mitigation: vulnerability assessment

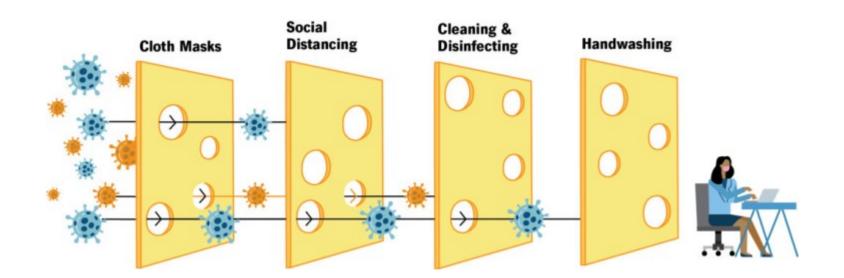
	Effects on the protected areas				
	High	Medium	Low		
system	icross_redional transport avis		Auxiliary buildings, ancillary infrastructure, subsidary roads, low personal risk		
High (Effects on the entire system, serial failure)	CC3	CC3	CC3		
Medium	CC3	CC3	CC2		
Low (Only local effects, no other mitigation measures affected)	CC3	CC2	CC1		

- Consequence classes are defined as follows:
 - CC3: Serious effects for human life **or** considerable economic, social or environmental effects.
 - CC2: Medium effects for human life **and** considerable economic, social or environmental effects.
 - CC1: Low effects for human life **and** no/negligible economic, social or environmental effects.
- Key mitigation works are shaded in grey.


Technical mitigation: vulnerability assessment

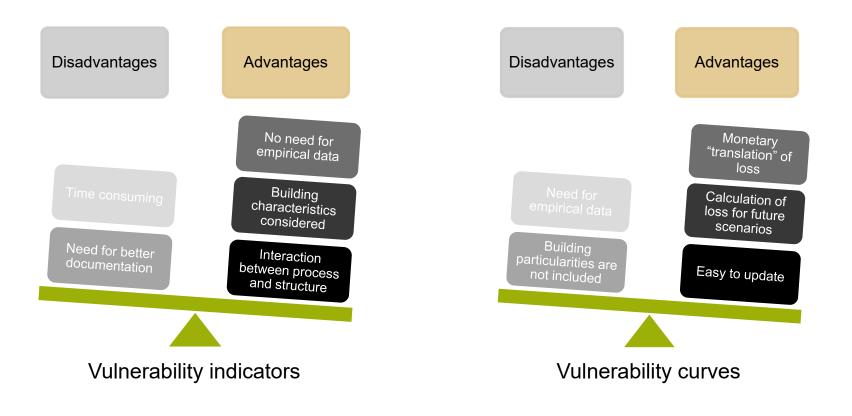
	Condition levels						
	Structural safety				Period of structural measures		
Level	Date of assessment	For next event (HQ30)	For next design event	Long-term	Standard migitation	Key mitigation	
0	-	-	-	-	-	-	
1	Given	Given	Given	Given	Not defined	Not defined	
2	Given	Given	Given	Given	Not defined	Not defined	
3	Given	Given	Given	Not given	Not defined	Not defined	
4	Given	Given	Not given	Not given	Not defined	3 years	
5	Given	Not given	Not given	Not given	2 years	1 year	
6	Not given	Not given	Not given	Not given	2 years	1 year	

- Levels for mitigation work condition:
 - 0 = Mitigation work is unnecessary
 - 1 = very good condition
 - 2 = good condition
 - 3 = sufficient condition
 - 4 = inadequate condition
 - 5 = poor condition
 - 6 = Mitigation work is destroyed


Multi-dimensional nature of vulnerability

 Different conditions have to line up so that vulnerability becomes manifest.

Multi-dimensional nature of vulnerability


 Different conditions have to line up so that vulnerability becomes manifest.

- Methods to assess physical vulnerability:
 - Qualitative methods (e.g. indicator-based index)
 - Semi-quantitative methods (e.g. matrices)
 - Quantitative methods (curves)

- Methods to assess physical vulnerability:
 - Qualitative methods (e.g. indicator-based index)
 - Semi-quantitative methods (e.g. matrices)
 - Quantitative methods (curves)

- Methods to assess physical vulnerability:
 - Qualitative methods (e.g. indicator-based index)
 - Semi-quantitative methods (e.g. matrices)
 - Quantitative methods (curves)
- Individual loss assessment methods available for hazards that occur regularly and can be assessed using defined magnitudes,
- ...but knowledge gaps for rare events and cascading hazards (with extraordinary magnitudes);
- ...spatial and temporal dynamics in exposure and thus risk are often not considered.

Trento Workshop I 09.10.2023 I Fuchs

- Consider adaptation and mitigation:
 - Land-use planning
 - Local structural protection
 - Technical mitigation
- Consider other vulnerabilities:
 - Social (education, communication)
 - Economic (insurance systems)
 - Institutional (standards, law, and law enforcement)

Next steps – Research needs

- Validation of indices and curves with data from new events;
- More loss data (damage documentation) to also reduce the spread (e.g. floods);
- Better visual representation of results (how can practitioners and decision makers better use the results);
- Integration on indicators associated with the magnitude/intensity of the hazard;
- Scale issues (e.g. national vs. local level);
- Transferability of the methods to a different context (e.g. curves from the Alps to the Pyrenees).

References and further reading

- Fuchs/Thaler (2018): Vulnerability and resilience to natural hazards. Cambridge, Cambridge University Press
- Fuchs (2009): Susceptibility versus resilience to mountain hazards in Austria Paradigms of vulnerability revisited. Natural Hazards and Earth System Sciences 9 (2): 337-352
- Papathoma-Köhle et al. (2015): Loss estimation for landslides in mountain areas An integrated toolbox for vulnerability assessment and damage documentation. Environmental Modelling and Software 63. p. 156-169
- Papathoma-Köhle et al. (2017): Matrices, curves and indicators: a review of approaches to assess physical vulnerability to debris flows. *Earth-Science Reviews* 171. p. 272-288
- Fuchs et al. (2019): Short communication: A model to predict flood loss in mountain areas. Environmental Modelling and Software 117. p. 176-180
- Papathoma-Köhle et al. (2019): Vulnerability indicators for natural hazards: an innovative selection and weighting approach. Scientific Reports 9. 15026
- Papathoma-Köhle et al. (2019): The importance of indicator weights for vulnerability indices and implications for decision making in disaster management. International Journal of Disaster Risk Reduction 36. 101103
- Papathoma-Köhle et al. (2021): An institutional approach to vulnerability: evidence from natural hazard management in Europe. Environmental Research Letters 16 (4). 044056
- Papathoma-Köhle et al. (2022): A wildfire vulnerability index for buildings. Scientific Reports 12. 6378

Further questions?

Priv.-Doz. Dr. Sven Fuchs

University of Natural Resources and Life Sciences Vienna, Austria

sven.fuchs@boku.ac.at